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Abstract: Multivariate regression models for real-time coastal air quality forecasting were suggested
from 18 to 27 March 2015, with a total of 15 kinds of hourly input data (three-hours-earlier data of PM
and gas with meteorological parameters from Kangnung (Korea), associated with two-days-earlier
data of PM and gas from Beijing (China)). Multiple correlation coefficients between the predicted
and measured PM10, PM2.5, NO2, SO2, CO and O3 concentrations were 0.957, 0.906, 0.886, 0.795,
0.864 and 0.932 before the yellow sand event at Kangnung, 0.936, 0.982, 0.866, 0.917, 0.887 and
0.916 during the event and 0.919, 0.945, 0.902, 0.857, 0.887 and 0.892 after the event. As the signifi-
cance levels (p) from multi-regression analyses were less than 0.001, all correlation coefficients were
very significant. Partial correlation coefficients presenting the contribution of 15 input variables to
6 output variables using the models were presented for the three periods in detail. Scatter plots
and their hourly distributions between the predicted and measured values showed the quite good
accuracy of the modeling performance for the current time forecasting of six output values and their
high applicability.

Keywords: air quality estimate; multivariate regression modeling; PM10; PM2.5; NO2; SO2; CO; O3;
yellow sand event; significance level; partial correlation coefficient

1. Introduction

The rapidly increasing consumption of fossil fuels, such as gasoline and coal, due to
industrial development in each country and rural urbanization in northeast and southeast
Asia results in worse ambient air pollution, which is mainly composed of particulate
matter and gases emitted from the vehicles on the road, industries, forest fires, heating
and cooking boilers, trash burning and the yellow dust raised from the desert and arid
areas [1–6]. Various pollutants are very harmful to human health through respiratory
diseases, are a multi-faceted health threat to outdoor physical activity and cause worse
visibility during long hazy weather [7–12].

Sun et al. [13], Darmenova et al. [14], Wang et al. [15], Uno et al. [16] and Choi and
Zhang [17] insist that yellow dust, which is also called various names such as Asian dust,
dust storm, yellow sand and KOSA is easily caused under a relative humidity of less than
40% near the ground surface of wide arid areas and the desert in northern China and a
wind velocity of over 10 m/s for the dust mobilization in spring.

Iwasaka et al. [18] carried out lidar observation to investigate the large depolarization
ratio of free tropospheric aerosols over the Taklamakan Desert. Gao et al. [19], Sun [20],
Chung et al. [21] and Zhang et al. [22] reported on dust storm frequency in spring and dust
deposition on the Chinese Loess Plateau. As a strong northwesterly wind could remove
several hundred thousand tons of both sand and dust from the desert and arid areas and
those substances were uplifted, about 50% of the dust was accumulated in the desert area’s
vicinity and the rest was transported to downwind areas such as Korea and deposited
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to its ground surface, causing low visibility due to a higher PM concentration [23,24].
Shim et al. [25] insisted that Asian dust particles transported concurrently with anthro-
pogenic pollutants contributed to an elevated PM2.5 concentration, through aerosol lidar
and optical particle counter measurements.

Using numerical models, Lin [26] showed the transport of yellow sand to Taiwan and
Uno et al. [27] explained the long-range transport of soil dust from Asia to the tropical
North Pacific. Chin et al. [28], Jaffe et al. [29] and McKendry et al. [30] indicated the long-
range transport of air pollutants and Asian dust to southern California and western Canada
and further analyzed the chemical composition of aerosols.

Many researchers have conducted statistical and artificial neural network modeling
research to predict dust concentrations. The previous statistical analyses on the impact of
yellow dust in Korea comprised simple regression models. Lee and Chung [31] explained
the fractional ratio and correlations of temporal PM10, PM2.5 and PM1 at Gangneung that
was affected by the transported dust from the Gobi Desert. Bhaskar and Mehta [32] showed
the meteorological effect on particulate matters (PM) in Ahmedabad. Similarly, Chung
et al. [33], Li et al. [34], Shi et al. [35] and Zhao [36] explained the relationship of PM with
meteorological elements in China using multiple regression models without a gas effect.

Kim [37], Lim [38], Choi [39] and Jeon and Son [40] performed air quality prediction
using artificial neural network and multivariate regression models in Korea. The predictions
by two models with numerical models were very accurate. Instead of a complicated
numerical model, a multivariate regression model was devised for real-time prediction of
PM10, PM2.5, NO2, SO2, O3 and CO at Kangnung (Korea), using 3 h-earlier pollution and
meteorological data and 2-days-earlier pollution data from Beijing (China).

2. Study Area and Data Analysis
2.1. Study Area

Figure 1 indicates the geographical features of northeastern Asia including Russia,
Mongolia (the Gobi Desert), China and Korea.
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In spring, when the prevailing northwesterly wind blows over the deserts and arid
areas in southern Mongolia and northern China, several hundred thousand tons of sand
and dust could be raised up and transported downwind in an eastward direction toward
Beijing (China). The dust could combine with local pollutants emitted from Beijing and
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reach Korea’s eastern coast, including Kangnung City, resulting in a worse influence on its
urban air quality.

2.2. Measured Material and Analysis of Data

Hourly averaged PM10, PM2.5, SO2, CO, O3 and NO2 concentrations measured at
the Ockcheondong observation point of Kangnung city were obtained from the home-
page (Air Korea) of the Korea Environment Corporation (website address: https://www.
airkorea.or.kr/web/, accessed on 1 February 2023) and hourly meteorological data (air
temperature (◦C; TEMP), wind speed (m/s; WIND) and relative humidity (%; RH)) mea-
sured at the Okcheondong observation point of Kangnung city by the Gangwon Re-
gional Meteorological Administration (GRMA) were obtained through a website (https:
//data.kma.go.kr/, accessed on 1 February 2023). Hourly PM10, PM2.5, SO2, CO, O3 and
NO2 values measured at the Yongdingmen observation point in Beijing, China, were also
obtained (https://quotsoft.net/air/, accessed on 20 January 2021).

Uno et al. [16], Choi and Zhang [17] and Kai et al. [18] explained clearly that the yellow
dust particles raised from the Gobi Desert under strong northwesterly wind over 10 m/s
were transported toward downwind regions such as Beijing and they further combined
with local pollutants emitted from the cities. Then, those particles moved to the further
downwind regions such as the Korean peninsula including Kangnung city and the islands
of Japan. It takes approximately two days (i.e., 48 h) for the particles to travel the over
1400 km distance between Beijing and Kangnung. This means the current concentrations of
particulate matter and gases at Kangnung City should be affected by the two-days-earlier
air pollutant concentrations in Beijing.

Thus, in this study to make current-time predictions of air pollutant concentrations,
such as PM (PM10 and PM2.5) and gas (SO2, CO, O3 and NO2), at Kangnung City, we
used input data sets of not only three-hours-earlier data of PM, gas and meteorological
parameters (air temperature, wind speed and relative humidity) at Kangnung city but also
two-days-earlier data of PM and gas in Beijing.

The correlation coefficients and regression equations between the observed and pre-
dicted PM10, PM2.5, SO2, CO, O3 and NO2 concentrations at Kangnung City affected by the
PM and gases from Beijing city (China) in the yellow sand route between 18 and 27 March
were divided into three periods: before the inflow of yellow dust (00:00 LST, 18 March
2015–00:00 LST 21 March 2015), during its inflow (01:00 LST, 21 March 2015–00:00 LST, 23
March 2015) and after its inflow (01:00 LST, 23 March 2015–00:00 LST, 27 March 2015). Thus,
multivariate regression prediction models were obtained via multiple regression analyses
using SPSS-v27 statistical software. The predicted value of each pollutant was compared
with the one later observed to test the goodness of its predicted value.

3. Results
3.1. Satellite Images of Yellow Dust Transport

We used GONE-2 (METOP-B) KNMI/O3MSAF/EUMETSAT satellite images reflecting
a cloud of dust before and during yellow sand periods in 2015 to investigate the transport
of yellow dust from northern China, including desert and dry areas, to the downwind
regions, such as South China, Korea and Japan, in the dust transport route in Figure 2a,b.

https://www.airkorea.or.kr/web/
https://www.airkorea.or.kr/web/
https://data.kma.go.kr/
https://data.kma.go.kr/
https://quotsoft.net/air/
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Figure 2. GONE-2 (METOP-B) KNMI/O3MSAF/EUMETSAT satellite images reflecting a cloud
of dust on (a) 19 March 2015 (before) and (b) 22 March (during the period of the yellow sand
event in Korea). Small blue squares and circles denote Beijing (China) and Kangnung (Korea).
(https://www.temis.nl/aviation/aai-archive.php?Year=2015&Month=03&Day=19, accessed on 25
February 2023).

Figure 2a shows that the GONE-2 (METOP-B) satellite images can reflect the yellow
sand and dust initially raised from the arid areas in the east of Lake Baikal in Siberia
(Russia), the Gobi Desert and Inner Mongo in northern China. Then, the dust clouds move
toward eastern China, extending to southern China at the same time on 18 March. After
that, on 19 March, as shown in Figure 2a, the dust clouds moved further eastward and
passed by Beijing and Tianjin, with the dust belt extended to southern China and Vietnam.
However, the yellow dust did not reach the Korean peninsula, including the Korean east
coast and Kangnung. Another dust belt was detected from Hokkaido in northern Japan to
Honshu in the middle of Japan that extended to the east of the Philippines.

In Figure 2b, the METOP-B images show the dust belt from Vladivostok (Russia) to the
Korean peninsula, including its east coast (Kangnung city, Republic of Korea), Kyusu Island
(Japan), Taiwan and Luzon Island (Philippines) on 22 March, when PM10 concentration
was very high at Kangnung during the yellow sand event from 00:01 LST, 21 March to 00:00
LST, 23 March. This dust belt is attributed to the transport of the previous dust belt that
was on the line of Beijing–southern China–Vietnam on 19 March in Figure 2a.

3.2. Hourly PM10, PM2.5 and PM1 Concentrations before, during and after the Dust Periods

Figures 3 and 4 indicate the hourly distribution of PM (PM10 and PM2.5) and gas (SO2,
CO, O3 and NO2) concentrations and meteorological parameters (air temperature, wind
speed and relative humidity) at the Okcheondong observation point in Kangnung (Korea).
Figure 5 also indicates the hourly distribution of PM (PM10 and PM2.5) and gas (SO2, CO,
O3 and NO2) concentrations at the Yongdingmen observation point in Beijing (China).

https://www.temis.nl/aviation/aai-archive.php?Year=2015&Month=03&Day=19
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yellow sand period at the Okcheondong observation point in Kangnung city (Korea), correspond-
ing to the PM concentrations on 16 to 25 March at the Yongdingmen observation point in Beijing
city (China).

Choi and Zhang [17] indicated that the transportation of pollutants from Beijing
(China) to Kangnung (Korea) takes about two days via a northwesterly wind of about
10 m/s. Thus, PM and gas pollutants for the second sand period in Beijing in Figure 5
may contribute to pollutant concentrations in Kangnung two days later in Figure 3. Thus,
PM concentrations for the yellow sand event (on 00 LST, 21 March to 00 LST, 23 March)
detected at the Okcheondong observation point in Kangnung could have been affected by
PM and gaseous pollution at the Yongdingmen observation point in Beijing two days earlier
(00 LST, 19 March to 00 LST, 21 March), corresponding to the second yellow sand period
in Beijing.
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(c) relative humidity (%; RH) at Kangnung in Korea (modified from [41]).

In Figure 3, the PM10 concentration before the Yellow Sand event at Kangnung was
about 50.445 µg/m3. When the PM10 concentration increased, the PM2.5 concentration
increased and had a mean value of 41.234 µg/m3. Both during the event (01:00 LST, 21
March to 00:00 LST, 23 March) and in the early stages after the event on 23 March, the PM10
and PM2.5 concentrations rapidly increased; however, the increase in PM2.5 was much
smaller than that in PM10. This may be attributed to the intrusion of major coarse particles
of yellow sand into Kangnung. After the event, the temporal distributions of PM10 and
PM2.5 had a similar pattern, with similar magnitudes to those values of PM concentrations
before the event with slightly different magnitudes.

We further investigated the effect of the ground-based concentrations of SO2, CO, O3
and NO2 at Kangnung in increasing the PM concentrations in Figure 3 before, during and
after the yellow sand event from 00 LST, 18 March to 00 LST, 27 March. The SO2, NO2 and
CO concentrations had a similar temporal tendency to some extent, whereas O3 had an
opposite tendency. The concentrations before and during the event were slightly higher
than ones after the event; however, the CO concentration relatively unchanged.
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Figure 5. Hourly distribution of (a) PM10 and PM2.5 concentrations (µg/m3) and (b) SO2 (×1000),
(c) CO (×100), (d) O3 (×1000) and NO2 (×1000) concentrations (ppm) at the Yongdingmen ob-
servation point in Beijing (China), corresponding to PM concentrations on 18 to 27 March at
Kangnung, Korea.

In Figure 3d shows, as Mendez et al [42] explained, that when the O3 concentration
increases, the NO2 concentration decreases. A diurnal NOX (= NO2 + O3) cycle shows
that NOx emitted from the vehicles on the road and heating boilers in residential areas
undergoes its photochemical reaction into O3 due to the increased daytime solar radiation,
resulting in its decrease. In contrast, O3 is reduced to NO2 at night through the NOx
cycle (i.e., no photochemical reaction of NO2), leading to a decrease in O3 concentration.
Chu et al. [43] insisted that the decreases in PM2.5 and NO2 concentrations support the
control of NOx to further reduce PM2.5 pollution in China and result in the increase in
O3 concentrations.

We investigated whether meteorological parameters could influence PM and gas
concentrations for the whole research period in Figure 4. The daytime air temperature near
the ground surface during the yellow sand event at Kangnung (from 01:00 LST, 21 March
to 00:00 LST 23 March) was much higher than in other periods. The maximum wind speed
also became much higher than in other periods. The wind speed should be over 10 m/s
(gust wind) for the dust mobilization in the desert. After the dust raised from the desert
surface was uplifted to about a 3 km height, it was then transported a by westerly wind
of 8 m/s to 10 m/s and moved to the downwind site of Kangnung 1400 km away. When
high PM concentrations due to the dust were detected in Beijing, its local wind speed also
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became higher, with a maximum of 5.8 m/s more than before; however, it was much lower
due to the rough mountain topography surrounding the city than it was in the desert.

As the relative humidity had very low values of 6% to 54%, it was very dry without
precipitation in Kangnung. During the yellow sand period at Kangnung, the hourly air
temperature and wind speed increased more than in other periods but the relative humidity
tended to decrease. Thus, these trends for the meteorological parameters may affect the
PM and gas concentrations in the city in the presence of absence of yellow sand events.

Figure 5 shows that the SO2 and CO concentrations during the second yellow sand
period in Beijing from 00 LST, March 19 to 00 LST, March 21 decreased more markedly than
before and after this period; however, as with the SO2 and CO concentrations, the NO2
concentration also slightly decreased but with smaller differences, whereas there was an
opposite distribution of O3 to NO2 due to the NOx cycle. Therefore, the gases in Beijing
may affect the PM and gas concentrations at Kangnung.

3.3. Definition of Variables in the Multivariate Regression Model

A multivariate regression model consists of a set of independent variables as input
data Xj to predict the dependent variable as output data Yi, as shown in Table 1. This means
that the 15 input variables include data for three hours earlier at Kangnung (PM (PM10-
K, PM2.5-K), meteorological (TEMP_K, WIND_K, RH_K) and gas (SO2_K, CO_K, O3_K,
NO2_K)) and for 2 days earlier at Beijing (PM (PM10_C, PM2.5_C) and gas (SO2_C, CO_C,
O3_C, NO2_C)) that were used to make real-time output forecasting variables (PM10_K(N),
PM2.5_K(N), SO2_K(N), CO_K(N), O3_K(N) and NO2_K(N)) at Kangnung.

Table 1. Input and output variables in the multivariate regression model for real-time forecasting.

Input Variable Output Variable

X1 PM10_K: 3 h before

at Kangnung city, Korea
Y1 PM10_K(N): present (now)
Y2 PM2.5_K(N): present (now)
Y3 SO2_K(N): present (now)
Y4: CO_K(N): present (now)
Y5 O3_K(N): present (now)
Y6 NO2+_K(N): present (now)

X2 PM2.5_K: 3 h before

X3 TEMP_K: 3 h before

X4 WIND_K: 3 h before

X5 RH_K: 3 h before

X6 SO2_K: 3 h before

X7 CO_K: 3 h before

X8 O3_K: 3 h before

X9 NO2_K: 3 h before

X10 PM10_C: 2 days before

X11 PM2.5_C: 2 days before

X12 SO2_C: 2 days before

X13 CO_C: 2 days before

X14 O3_C: 2 days before

X15 NO2_C: 2 days before

3.4. Regression Equations and Correlation Matrix among PM10, PM2.5, SO2, CO, O3 and NO2
Parameters (Kangnung) Affected by Meteorological Variables Associated with PM and
Gases (Beijing)

A multiple regression equation consists of independent variables Xj to predict the
dependent variable Yi, such as in Equations (1) and (2).
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Y1 = a11X1 + a12X2 + a13X3 + a14X4 + a15X5 + a16X6 + a17X7 + a18X8 + a19X9
+ a110X10 + a111X11 + a112X12 + a113X13 + a114X14 + a115X15 + b1
Y2 = a21X1 + a22X2 + a23X3 + a24X4 + a25X5 + a26X6 + a27X7 + a28X8 + a29X9
+ a210X10 + a211X11 + a212X12 + a213X13 + a214X14 + a215X15 + b2

Y3 = a31X1 + a32X2 + a33X3 + a34X4 + a35X5 + a36X6 + a37X7 + a38X8 + a39X9
+ a310X10 + a311X11 + a312X12 + a313X13 + a314X14 + a315X15 + b3

Y4 = a41X1 + a12X2 + a13X3 + a14X4 + a15X5 + a16X6 + a17X7 + a18X8 + a19X9
+ a110X10 + a111X11 + a112X12 + a113X13 + a114X14 + a115X15 + b1
Y5 = a51X1 + a22X2 + a23X3 + a24X4 + a25X5 + a26X6 + a27X7 + a28X8 + a29X9
+ a210X10 + a211X11 + a212X12 + a213X13 + a214X14 + a215X15 + b2

Y6 = a61X1 + a32X2 + a33X3 + a34X4 + a35X5 + a36X6 + a37X7 + a38X8 + a39X9
+ a310X10 + a311X11 + a312X12 + a313X13 + a314X14 + a315X15 + b3

(1)

Equation (1) can be rewritten in a matrix form as below.



Y1
Y2
Y3
Y4
Y5
Y6

 =



a11 a12 . . . . . . . . . . . . a115
a21 a22 . . . . . . . . . . . . a215
a31 a32 . . . . . . . . . . . . a315
a41 a42 . . . . . . . . . . . . a415
a51 a52 . . . . . . . . . . . . a515
a61 a62 . . . . . . . . . . . . a615





X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15



+



b1
b2
b3
b4
b5
b6

 (2)

where aij (i = 1 to 6; j = 1 to 15) indicates the coefficient of the matrix and the measured
values of Xj (j; represents the number of independent variables; j = 1 to 15) such as PM10_K,
PM2.5_K, TEMP_K (air temperature), WIND_K (wind speed), RH_K (relative humidity),
SO2_K, CO_K, O3_K, NO2_K, PM10_C, PM2.5_C, SO2_C, CO_C, O3_C and NO2_C. The
real-time predictive values Yi (i = 1 to 6; PM10_K(N), PM2.5_K(N), SO2_K(N), CO_K(N),
O3_K(N) and NO2_K(N)) are dependent variables and bi (i = 1 to 6) is an error term that
intercepts in the equations of Yi.

In this study, our prediction models comprise multiple predictive regression equations
on each PM10_K, PM2.5_K, SO2_K, CO_K, O3_K and NO2_K value that are influenced by
not only meteorological and gas parameters of the city but also PM10_C, PM2.5_C, SO2_C,
CO_C, O3_C and NO2_C concentrations. Tables 2–4 shows multiple correlation coefficients
and predictive regression equations on each PM and gas concentration at Kangnung before,
during and after the yellow sand periods in three classifications through multiple regression
analyses using SPSS statistics software v27.
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Table 2. Multivariate correlation coefficients and predictive regression equations for real-time
PM10_K(N), PM2.5_K(N), SO2_K(N), CO_K(N), O3_K(N) and NO2_K(N) values at Kangnung, Korea
(K) affected by meteorological parameters associated with the PM and gases in Beijing, China (C)
before the Yellow Sand event, 2015.

Period Multi-Correlation
Coefficient (r) Multivariate Predictive Regression Equation

18–21 March 2015
Before the Yellow

Sand Event

0.957 PM10_K(N)

= 0.559 × PM10_K − 0.175 × PM2.5_K + 2.362 ×
TEMP_K − 1.355 × WIND_K − 0.477 × RH_K
− 2.982 × SO2_K + 0.162 × CO_K − 0.143 × O3_K +
0.304 × NO2_K + 0.036 × PM10_C
− 0.036 × PM2.5_C + 0.340 × SO2_C − 0.064 ×
CO_C − 0.500 × O3_C − 0.148 × NO2_C + 87.948

0.906 PM2.5_K(N)

= 0.122 × PM10_K + 0.452 × PM2.5_K − 0.164 ×
TEMP_K + 0.291 × WIND_K + 0.204 × RH_K
− 0.257 × SO2_K + 0.148 × CO_K + 0.526 × O3_K +
0.565 × NO2_K + 0.002 × PM10_C
− 0.008 × PM2.5_C − 0.075 × SO2_C + 0.013 ×
CO_C + 0.005 × O3_C + 0.006 × NO2_C − 37.838

0.886 NO2_K(N)

= 0.001 × PM10_K − 0.058 × PM2.5_K − 0.332 ×
TEMP_K − 1.788 × WIND_K + 0.194 × RH_K
+ 0.407 × SO2_K − 0.016 × CO_K + 0.156 × O3_K +
0.784 × NO2_K + 0.001 × PM10_C
− 0.019 × PM2.5_C − 0.070 × SO2_C − 0.006 ×
CO_C + 0.124 × O3_C + 0.153 × NO2_C − 19.762

0.795 SO2_K(N)

= −0.013 × PM10_K − 0.012 × PM2.5_K + 0.196 ×
TEMP_K − 0.415 × WIND_K + 0.030 × RH_K
+ 0.521 × SO2_K + 0.009 × CO_K − 0.040 × O3_K −
0.065 × NO2_K − 0.007 × PM10_C
+ 0.003 × PM2.5_C + 0.021 × SO2_C − 0.001 × CO_C
− 0.001 × O3_C + 0.016 × NO2_C + 1.682

0.932 O3_K(N)

= −0.033 × PM10_K + 0.012 × PM2.5_K + 1.353 ×
TEMP_K + 2.838 × WIND_K − 0.218 × RH_K
+ 0.111 × SO2_K + 0.043 × CO_K + 0.564 × O3_K −
0.221 × NO2_K + 0.001 × PM10_C
+ 0.022 × PM2.5_C + 0.183 × SO2_C + 0.001 × CO_C
− 0.172 × O3_C − 0.182 × NO2_C + 26.519

0.864 CO_K(N)

= −0.033 × PM10_K + 0.423 × PM2.5_K + 0.141 ×
TEMP_K + 1.200 × WIND_K + 0.235 × RH_K
− 0.412) × SO2_K + 0.372 × CO_K − 1.404) × O3_K
− 1.510) × NO2_K + 0.073 × PM10_C
− 0.096) × PM2.5_C − 0.056) × SO2_C − 0.068) ×
CO_C + 0.025 × O3_C + 0.221 × NO2_C + 67.539
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Table 3. As shown in Table 2, except during the yellow sand event.

Period Multi-Correlation
Coefficient (r) Multivariate Predictive Regression Equation

21–23 March 2015
Duringthe Yellow

Sand Event

0.936 PM10_K(N)

= 0.656 × PM10_K − 0.339 × PM2.5_K -2.780 ×
TEMP_K + 3.634 × WIND_K − 0.658 × RH_K
− 0.661 × SO2_K + 0.698 × CO_K + 1.616 × O3_K +
1.288 × NO2_K + 0.122 × PM10_C
− 0.289 × PM2.5_C − 0.332 × SO2_C + 0.168 ×
CO_C + 0.324 × O3_C + 0.367 × NO2_C − 73.497

0.982 PM2.5_K(N)

= 0.102 × PM10_K + 0.261 × PM2.5_K − 0.570 ×
TEMP_K + 0.362 × WIND_K + 0.043 × RH_K
+ 0.651 × SO2_K + 0.263 × CO_K + 0.860 × O3_K +
0.699 × NO2_K + 0.055 × PM10_C
+ 0.049 × PM2.5_C + 0.025 × SO2_C + 0.079 × CO_C
− 0.007 × O3_C − 0.150 × NO2_C − 56.162

0.866 NO2_K(N)

= − 0.043 × PM10_K + 0.062 × PM2.5_K + 0.617 ×
TEMP_K − 1.998 × WIND_K + 0.081 × RH_K
+ 0.114 × SO2_K + 0.030 × CO_K + 0.300 × O3_K +
0.736 × NO2_K − 0.039 × PM10_C
− 0.039 × PM2.5_C + 0.176 × SO2_C + 0.020 × CO_C
+ 0.069 × O3_C + 0.070 × NO2_C − 11.366

0.917 SO2_K(N)

= − 0.010 × PM10_K + 0.013 × PM2.5_K − 0.067 ×
TEMP_K − 0.326 × WIND_K − 0.035 × RH_K
+ 0.041 × SO2_K + 0.063 × CO_K + 0.116 × O3_K +
0.097 × NO2_K + 0.003 × PM10_C
+ 0.024 × PM2.5_C + 0.022 × SO2_C + 0.007 × CO_C
− 0.038 × O3_C − 0.058 × NO2_C + 2.650

0.916 O3_K(N)

= 0.036 × PM10_K − 0.118 × PM2.5_K + 0.326 ×
TEMP_K + 2.790 × WIND_K − 0.127 × RH_K
− 0.819 × SO2_K + 0.046 × CO_K + 0.395 × O3_K +
0.132 × NO2_K + 0.106 × PM10_C
− 0.009 × PM2.5_C − 0.010 × SO2_C − 0.025 ×
CO_C − 0.211 × O3_C − 0.132 × NO2_C + 10.742

0.887 CO_K(N)

= − 0.096 × PM10_K + 0.071 × PM2.5_K + 1.654 ×
TEMP_K − 3.874 × WIND_K + 0.365 × RH_K
+ 3.152 × SO2_K + 0.460 × CO_K + 0.216 × O3_K −
0.570 × NO2_K + 0.008 × PM10_C
+ 0.050 × PM2.5_C − 0.015 × SO2_C + 0.099 × CO_C
− 0.166 × O3_C − 0.191 × NO2_C + 9.089

Multiple correlation coefficients among the real-time predicted PM10_K, PM2.5_K,
SO2_K, CO_K, O3_K and NO2_K values were in the range of 0.795 to 0.982. In particular,
the correlation coefficients for PM10-K, PM2.5-K, NO2-K, SO2_K, O3_K and CO_K before
(during; after) the yellow sand periods were 0.957 (0.936; 0.919), 0.906 (0.982; 0.945), 0.886
(0.866; 0.902), 0.795 (0.917; 0.857), 0.932 (0.916; 0.892) and 0.864 (0.887; 0.887), respectively.

Correlation analysis of PM10_K, PM2.5_K, SO2_K, CO_K, O3_K and NO2_K shows
that the values were significantly correlated at p < 0.001, though their partial correlation
coefficients were different in Tables 5 and 6. In particular, as the correlation coefficients
between the predicted and measured values of PM10 (PM2.5) for the whole period were
very high, 0.919 to 0.957 (0.906 to 0.982), the values predicted by the model were very close
to the measured values, reflecting the measured values quite well.
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Table 4. As shown in Table 2, except for after the yellow sand event.

Period Multi-Correlation
Coefficient (r) Multivariate Predictive Regression Equation

23–27 March 2015
Afterthe Yellow Sand

event

0.919 PM10_K(N)

= 0.866 × PM10_K – 0.242 × PM2.5_K – 0.529 ×
TEMP_K + 1.037 × WIND_K – 0.056 × RH_K
− 0.838 × SO2_K + 0.059 × CO_K + 0.088 × O3_K +
0.373 × NO2_K – 0.012 × PM10_C
+ 0.038 × PM2.5_C – 0.001 × SO2_C + 0.006 × CO_C
+ 0.047 × O3_C + 0.086 × NO2_C – 1.486

0.945 PM2.5_K(N)

= 0.060 × PM10_K + 0.575 × PM2.5_K – 0.235 ×
TEMP_K + 0.630 × WIND_K + 0.024 × RH_K
− 0.368 × SO2_K + 0.095 × CO_K + 0.316 × O3_K +
0.413 × NO2_K – 0.008 × PM10_C
+ 0.064 × PM2.5_C – 0.033 × SO2_C + 0.003 × CO_C –
0.033 × O3_C – 0.027 × NO2_C – 13.986

0.902 NO2_K(N)

= − 0.117 × PM10_K + 0.084 × PM2.5_K – 0.119 ×
TEMP_K – 0.178 × WIND_K + 0.136 × RH_K
− 1.015 × SO2_K – 0.064 × CO_K – 0.045 × O3_K +
0.761 × NO2_K – 0.006 × PM10_C
− 0.010 × PM2.5_C + 0.016 × SO2_C + 0.024 × CO_C
+ 0.110 × O3_C + 0.101 × NO2_C + 1.605

0.857 SO2_K(N)

= 0.002 × PM10_K – 0.033 × PM2.5_K – 0.121 ×
TEMP_K – 0.038 × WIND_K – 0.002 × RH_K
+ 0.112 × SO2_K + 0.038 × CO_K + 0.032 × O3_K +
0.044 × NO2_K – 0.005 × PM10_C
+ 0.030 × PM2.5_C – 0.005 × SO2_C + 0.005 × CO_C
+ 0.009 × O3_C + 0.001 × NO2_C + 0.372

0.892 O3_K(N)

= 0.120 × PM10_K + 0.021 × PM2.5_K + 0.507 ×
TEMP_K + 0.296 × WIND_K – 0.165 × RH_K
+ 1.445 × SO2_K + 0.056 × CO_K + 0.642 × O3_K –
0.187 × NO2_K + 0.007 × PM10_C
− 0.014 × PM2.5_C – 0.016 × SO2_C – 0.022 × CO_C
– 0.065 × O3_C – 0.053 × NO2_C + 7.410

0.887 CO_K(N)

= − 0.085 × PM10_K – 0.444 × PM2.5_K – 1.192 ×
TEMP_K – 0.386 × WIND_K + 0.126 × RH_K
− 2.236 × SO2_K + 0.512 × CO_K + 0.451 × O3_K +
0.737 × NO2_K – 0.072 × PM10_C
+ 0.291 × PM2.5_C + 0.019 × SO2_C + 0.014 × CO_C
– 0.146 × O3_C – 0.160 × NO2_C + 34.936
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Table 5. Partial correlation coefficient matrix of variables to PM10-K(N) in a multivariate regression model for Kangnung before the yellow sand event, 2015.

Pearson Correlation Coefficient (r) before the Yellow Sand Event

Item PM10_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

PM10_K(N) 1.000 0.910 0.591 0.306 −0.164 −0.306 0.103 0.360 −0.175 0.418 −0.356 −0.527 0.217 −0.322 −0.004 0.158

PM10_K 1.000 0.671 0.279 −0.099 −0.270 0.083 0.330 −0.112 0.331 −0.339 −0.489 0.271 −0.321 0.052 0.078

PM2.5_K 1.000 −0.122 −0.054 0.114 −0.117 0.246 0.162 −0.087 −0.016 −0.086 0.383 −0.072 −0.298 0.028

TEMP_K 1.000 0.192 −0.896 0.167 −0.239 0.081 0.338 −0.556 −0.600 −0.345 −0.512 0.742 −0.103

WIND_K 1.000 −0.152 −0.238 −0.424 0.359 −0.178 0.136 0.148 0.188 0.039 0.220 0.034

RH_K 1.000 −0.197 0.255 −0.162 −0.226 0.434 0.514 0.105 0.278 −0.655 −0.030

SO2_K 1.000 0.590 −0.531 0.483 −0.373 −0.268 −0.303 −0.280 0.069 −0.062

CO_K 1.000 −0.690 0.475 −0.313 −0.263 −0.137 −0.279 −0.227 −0.002

O3_K 1.000 −0.822 0.376 0.318 0.416 0.329 0.010 −0.006

NO2_K 1.000 −0.418 −0.473 −0.348 −0.448 0.233 0.086

PM10_C 1.000 0.925 0.584 0.805 −0.535 0.486

PM2.5_C 1.000 0.410 0.775 −0.540 0.352

SO2_C 1.000 0.549 −0.330 0.412

CO_C 1.000 −0.634 0.617

O3_C 1.000 −0.529

NO2_C 1.000

Pearson Correlation Coefficient (r) before the Yellow Sand event

Item PM2.5_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

PM2.5_K(N) 1.000 0.701 0.826 −0.105 −0.090 0.148 −0.047 0.375 0.035 0.086 −0.030 −0.136 0.314 −0.108 −0.301 0.091

Pearson Correlation Coefficient (r) before the Yellow Sand event

Item SO2_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

NO2_K(N) 1.000 0.244 −0.179 0367 −0.196 −0.252 0.379 0.360 −0.677 0.842 −0.397 −0.475 −0.357 −0.409 0.258 0.153

Pearson Correlation Coefficient (r) before the Yellow Sand event

Item SO2_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

SO2_K(N) 1.000 0.004 −0.149 0.049 −0.328 −0.049 0.704 0.557 −0.513 0.351 −0.364 −0.251 -0.302 −0.210 −0.030 0.025
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Table 5. Cont.

Pearson Correlation Coefficient (r) before the Yellow Sand event

Item O3_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

O3_K(N) 1.000 −0.084 0.190 0.070 0.396 −0.172 −0.378 −0.578 0.899 −0.748 0.333 0.319 0.425 0.301 0.011 −0.070

Pearson Correlation Coefficient (r) before the Yellow Sand event

Item CO_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

CO_K(N) 1.000 0.264 0.209 −0.267 −0.355 0.326 0.344 0.769 −0.670 0.418 −0.301 −0.285 −0.175 −0.287 −0.226 0.033

Table 6. Partial correlation coefficient matrix of variables to PM10-K(N) in a multivariate regression model for Kangnung during the yellow sand event, 2015.

Pearson Correlation Coefficient (r) during the Yellow Sand Event

Item PM10_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

PM10_K(N) 1.000 0.884 0.749 0.087 0.209 −0.240 0.544 0.215 0.564 −0.015 0.460 0.063 0.181 0.003 −0.176 0.116

PM10_K 1.000 0.769 0.048 0.157 −0.226 0.485 0.143 0.576 −0.083 0.351 −0.077 0.065 −0.110 −0.159 0.028

PM2.5_K 1.000 0.032 0.115 −0.054 0.759 0.499 0.301 0.271 0.526 0.297 0.237 0.161 −0.187 0.139

TEMP_K 1.000 0.430 −0.767 −0.027 −0.311 0.472 −0.050 0.166 −0.051 −0.518 −0.454 0.699 −0.507

WIND_K 1.000 −0.690 −0.014 −0.293 0.498 −0.494 −0.044 −0.197 −0.220 −0.286 0.307 −0.409

RH_K 1.000 −0.014 0.404 −0.641 0.387 −0.007 0.288 0.407 0.592 −0.542 0.565

SO2_K 1.000 0.777 −0.034 0.554 0.321 0.437 0.436 0.258 −0.274 0.235

CO_K 1.000 −0.496 0.651 0.040 0.471 0.490 0.551 −0.471 0.410

O3_K 1.000 −0.604 0.337 −0.290 −0.348 −0.542 0.351 −0.366

NO2_K 1.000 0.326 0.619 0.382 0.420 −0.218 0.423

PM10_C 1.000 0.547 0.217 0.058 −0.002 0.286

PM2.5_C 1.000 0.584 0.608 −0.420 0.719

SO2_C 1.000 0.766 −0.686 0.750

CO_C 1.000 −0.711 0.779

O3_C 1.000 −0.867
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Table 6. Cont.

Pearson Correlation Coefficient (r) during the Yellow Sand event

Item PM2.5_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

PM2.5_K(N) 1.000 0.748 0.932 0.066 0.065 −0.044 0.797 0.522 0.331 0.332 0.624 0.399 0.328 0.213 −0.208 0.229

Pearson Correlation Coefficient (r) during the Yellow Sand event

Item NO2_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

NO2_K(N) 1.000 −0.033 0.235 0.044 −0.539 0.327 0.446 0.526 −0.389 0.778 0.256 0.490 0.330 0.393 −0.146 0.361

Pearson Correlation Coefficient (r) during the Yellow Sand event

Item SO2_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

SO2_K(N) 1.000 0.398 0.723 0.002 −0.091 0.050 0.847 0.741 −0.012 0.520 0.414 0.523 0.410 0.332 −0.281 0.291

Pearson Correlation Coefficient (r) during the Yellow Sand event

Item O3_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

O3_K(N) 1.000 0.480 0.279 0.476 0.607 −0.665 0.004 −0.428 0.829 −0.437 0.420 −0.157 −0.286 −0.483 0.285 −0.292

Pearson Correlation Coefficient (r) during the Yellow Sand event

Item CO_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

CO_K(N) 1.000 0.124 0.471 −0.251 −0.343 0.417 0.667 0.826 −0.365 0.555 0.141 0.517 0.497 0.607 −0.457 0.458
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In Table 5, a partial correlation coefficients matrix before the yellow sand period,
predicted that the current PM10_K(N) in Kangnung is positively influenced by not only
the PM10_K (0.910; highest), PM2.5_K (0.591; 2nd high), NO2_K, CO_K, TEMP_K and
SO2_K in Kangnung, which had relatively high contributions, but also both SO2_C and
NO2_C in Beijing, which had a little contribution. A variable with a minus sign implies
negatively contributing to the PM10_K(N) concentration. PM2.5_C, PM10_C, CO_C and
O3_C contributed to the predicted PM10_K(N) negatively. The predicted PM2.5_K(N) is
positively influenced by the measured PM2.5_K (0.826; highest), PM10_K (0.701; 2nd high),
CO_K, RH_K, NO2_K and O3_K in Kangnung. However, it is a little influenced by the
SO2_C and NO2_C values in Beijing city. The others negatively influenced it.

The predicted NO2_K(N) is highly positively influenced by the measured NO2_K
(0.842; highest), SO2_K (0.379; 2nd high), TEMP_K, CO_K and PM10_K in Kangnung but is a
little influenced by the O3_C and NO2_C in Beijing; the other variables negatively influence
the predicted NO2_K(N). The predicted SO2_K(N) is positively influenced by the measured
SO2_K (0.704; highest), CO_K (0.557; 2nd high), NO2_K, TEMP_K and PM10_K in Kangnung
and the NO2_C in Beijing. The other variables affect it negatively. The predicted O3_K(N)
is positively influenced by the measured O3_K (0.899; highest), WIND_K, PM2.5_K and
TEMP_K in Kangnung and SO2_C (0.425; 2nd high), PM10_C, PM2.5_C, CO_C and O3_C
in Beijing; the other variables have a negative influence. Only O3_K(N) is more positively
influenced by the PM and gas in Beijing.

The predicted CO_K(N) is positively influenced by the measured CO_K (0.769; high-
est), NO2_K (0.418; 2nd high), SO2_K, RH_K, PM10_K and PM2.5_K in Kangnung but
is a little influenced by the NO2_C in Beijing; the other variables have a negative influ-
ence. Among the six real-time predicted variables, five (except for O3_K(N)) in Kangnung
were negatively influenced by all of the PM in Beijing; however, they were negatively or
positively influenced by the gases in Beijing.

In Table 6, during the yellow sand event, the predicted PM10_K(N) is highly positively
influenced by the measured PM10_K (0.884; highest), PM2.5_K (0.749; second highest),
O3_K, SO2_K, CO_K, WIND_K and TEMP_K in Kangnung but is a little influenced by the
PM10_C, SO2_C, NO2_C, PM2.5_C and CO_C in Beijing. The other variables had a negative
influenced on it. Thus, all of the PM and gas values in Beijing influenced it, except for
O3_C. The predicted PM2.5_K(N) is highly positively influenced by the measured PM2.5_K
(0.932; highest), SO2_K (0.797; second highest), PM10_K, CO_K, O3_K, NO2_K, TEMP_K
and WIND_K in Kangnung but is significantly influenced by the PM10_C, PM2.5_C, SO2_C,
CO_C and NO2_C in Beijing. In contrast, O3_C and RH_K affected it negatively. All of the
PM and gas values in Beijing influenced it, except for O3_C.

The predicted O3_K(N) is positively influenced by the measured O3_K (0.829; highest),
WIND_K (0.607; second highest), PM10_K, TEMP_K, PM2.5_K and SO2_K in Kangnung
and the PM10_C, O3_C in Beijing; the other variables affected it negatively. The predicted
CO_K(N) is positively affected by the measured CO_K (0.826; highest), SO2_K (0.667; sec-
ond highest), NO2_K, PM2.5_K, RH_K and PM10_K in Kangnung and the CO_C, PM2.5_C,
SO2_C, NO2_C and PM10_C in Beijing. However, O3_C, O3_K, WIND_K and TEMP_K
affect it negatively. Five real-time predicted variables (except for O3_K(N)) in Kangnung
are most positively influenced by all of the PM and gas (except for O3_C) values in Beijing.
Therefore, the PM and gas (except for O3_C) values in Beijing highly affected the predicted
PM and gas values in Kangnung.

In Table 7, after the yellow sand event, the predicted PM10_K(N) is positively influ-
enced by the measured PM10_K (0.888; highest), PM2.5_K (0.606; second highest), TEMP_K,
NO2_K, SO2_K, O3_K, WIND_K and CO_K in Kangnung and the NO2_C, PM2.5_C, SO2_C,
CO_C and PM10_C in Beijing, with a high effect on the predicted PM10_K(N). The other
variables affected it negatively. The predicted PM2.5_K(N) is positively influenced by
the measured PM2.5_K (0.921; highest), SO2_K, PM10_K, NO2_K, TEMP_K and CO_K in
Kangnung and the PM2.5_C (0.819; second highest), NO2_C, CO_C, SO2_C and PM10_C in
Beijing. Beijing’s measured PM and gas greatly contributed to the increase in the predicted
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PM2.5_K(N). The other variables affected it negatively. Thus, the PM and gas in Beijing
(except for O3_C) greatly contributed to the increase in both PM10_K(N) and PM2.5_K(N).

The predicted NO2_K(N) is positively influenced by the measured NO2_K (0.855; high-
est), PM2.5_K, SO2_K, TEMP_K, CO_K, PM.10_K and RH_K in Kangnung and the NO2_C
(0.564; second highest), PM2.5_C, SO2_C, CO_C and PM10_C in Beijing; O3_K, WIND_K
and O3_C affect it negatively. The measured PM and gas (except for O3_C) in Beijing greatly
contributed to the increase in the predicted NO2_K(N). O3_K contributes negatively to
it through NOx cycle processes. The predicted SO2_K(N) is positively influenced by the
measured SO2_K (0..751; highest), CO_K, PM2.5_K, NO2_K, PM10_K, TEMP_K and RH_K
in Kangnung and the PM2.5_C (0.698; second highest), CO_C, NO2_C, SO2_C and PM10_C
in Beijing; the other variables have a negative influence. Beijing’s measured PM and gas
(except O3_C) significantly contributed to the increase in the predicted SO2_K(N).

The predicted O3_K(N) is positively influenced by the measured O3_K (0.818; highest),
TEMP_K (0.525; second highest), WIND_K, PM10_K and PM2.5_K in Kangnung and the
O3_C, SO2_C, CO_C and PM2.5_C in Beijing, whereas the other variables affect it negatively.
The predicted CO_K(N) is positively influenced by the measured CO_K (0.770; highest),
RH_K (0.516; second highest), SO2_K, NO2_K and PM2.5_K in Kangnung and the NO2_C,
PM2.5_C, CO_C, PM10_C and SO2_C in Beijing; the other variables affect it negatively.
Consequently, after the yellow sand event, five real-time predicted variables (except for the
O3_K(N) case in Kangnung) are positively influenced by all of the PM and gas (except for
O3_C) in Beijing.
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Table 7. Partial correlation coefficient matrix of variables to PM10-K(N) in a multivariate regression model at Kangnung after the yellow sand event, 2015.

Pearson Correlation Coefficient (r) after the Yellow Sand Event

Item PM10_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

PM10_K(N) 1.000 0.888 0.606 0.523 0.036 −0.402 0.377 0.023 0.082 0.444 0.062 0.592 0.503 0.457 −0.278 0.605

PM10_K 1.000 0.619 0.532 0.090 −0.437 0.301 −0.081 0.239 0.282 0.066 0.546 0.464 0.430 −0.244 0.527

PM2.5_K 1.000 0.373 −0.187 −0.201 0.623 0.323 −0.030 0.511 0.199 0.803 0.741 0.770 −0.642 0.798

TEMP_K 1.000 0.213 −0.736 0.097 −0.424 0.484 0.341 −0.243 0.419 0.529 0.362 0.202 0.439

WIND_K 1.000 −0.463 −0.213 −0.384 0.365 −0.326 −0.184 −0.242 −0.188 −0.265 0.477 −0.358

RH_K 1.000 −0.099 0.378 −0.488 −0.023 0.289 −0.197 −0.392 −0.271 −0.235 −0.207

SO2_K 1.000 0.689 −0.397 0.572 0.248 0.659 0.631 0.713 −0.568 0.654

CO_K 1.000 −0.724 0.401 0.267 0.327 0.208 0.340 −0.642 0.355

O3_K 1.000 −0.583 −0.199 −0.062 0.111 0.023 0.380 −0.132

NO2_K 1.000 0.085 0.547 0.450 0.389 −0.318 0.639

PM10_C 1.000 0.482 0.204 0.255 −0.400 0.234

PM2.5_C 1.000 0.829 0.825 −0.618 0.880

SO2_C 1.000 0.896 −0.484 0.799

CO_C 1.000 −0.658 0.814

O3_C 1.000 −0.726

NO2_C 1.000

Pearson Correlation Coefficient (r) after the Yellow Sand event

Item PM2.5_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

PM2.5_K(N) 1.000 0.618 0.921 0.381 −0.198 −0.161 0.624 0.349 −0.086 0.585 0.221 0.819 0.716 0.732 −0.612 0.807

Pearson Correlation Coefficient (r) after the Yellow Sand event

Item NO2_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C
NO2_K(N) 1.000 0.129 0.412 0.334 −0.366 0.050 0.402 0.246 −0.432 0.855 0.034 0.470 0.421 0.355 −0.224 0.564

Pearson Correlation Coefficient (r) after the Yellow Sand event

Item SO2_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

SO2_K(N) 1.000 0.252 0.584 0.072 −0.339 0.023 0.751 0.622 −0.352 0.529 0.250 0.698 0.611 0.679 −0.582 0.662
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Table 7. Cont.

Pearson Correlation Coefficient (r) after the Yellow Sand event

Item O3_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

O3_K(N) 1.000 0.403 0.082 0.525 0.449 −0.636 −0.170 −0.536 0.818 −0.420 −0.184 0.028 0.167 0.088 0.286 −0.034

Pearson Correlation Coefficient (r) after the Yellow Sand event

Item CO_K(N) PM10_K PM2.5_K TEMP_K WIND_K RH_K SO2_K CO_K O3_K NO2_K PM10_C PM2.5_C SO2_C CO_C O3_C NO2_C

CO_K(N) 1.000 −0.140 0.283 −0.432 −0.512 0.516 0.455 0.770 −0.615 0.356 0.238 0.340 0.198 0.320 −0.635 0.351
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3.5. Scatter Plot and Empirical Regression Formula

Figures 6–8 show scatter plots to display the comparison between the predicted
and measured concentrations of PM10, PM2.5, NO2, SO2, O3 and CO calculated by mul-
tivariate predictive regression models in Table 2. The scatter plots to test the goodness
of the estimations of each variable present a model fitting with the calculated vs. the
measured values.
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The predicted values for the six hourly variables and their measured values in Figure 6
(as shown in Tables 2–4) are very highly correlated before (0.957, 0.906, 0.886, 0.795, 0.864
and 0.932), during (0.936, 0.982, 0.866, 0.917, 0.887 and 0.916) and after the yellow sand
period (0.919, 0.945, 0.902, 0.857, 0.887 and 0.892), respectively. The linear regression
equations in the scatter plots can also be easily used to calculate the predicted concentration
of each variable from both the three-hours-earlier measured values in Kangnung and
two-days-earlier measured values in Beijing.

The scatter plots to test the goodness of the estimations of each variable present a model
fitting with the calculated vs. the measured values. The predicted values for the hourly
PM10, PM2.5, NO2, SO2, O3 and CO concentrations and their measured values in Figure 6,
as shown in Table 2, are very highly correlated before (0.957, 0.906, 0.886, 0.795, 0.864 and
0.932), during (0.936, 0.982, 0.866, 0.917, 0.887 and 0.916) and after the yellow sand period
(0.919, 0.945, 0.902, 0.857, 0.887 and 0.892), respectively. The linear regression equations
given in the scatter plots can be easily used to calculate the predicted concentration of each
variable from both the three-hours-earlier measured values in Kangnung and two-days-
earlier measured values in Beijing.

Correlation coefficients between the predicted values and the measured concentrations
were very high, over 0.864 for all periods, except for SO2 (0.795, before), NO2 (0.866, during)
and SO2 (0.857, after). These empirical regression equations to calculate the predicted
values of PM10, PM2.5, NO2, SO2, O3 and CO are very useful and convenient practically
and can be used instead of using the multivariate regression equations in Tables 2–4 with
three-hours-earlier measured values for each original PM, gas and meteorological element.

3.6. Validation of Multivariate Models

Figure 9 shows that the temporal distribution of the measured (observed) and calcu-
lated values for PM10, PM2.5, NO2, SO2, O3 and CO denoted the behavior throughout each
period, such as before, during and after the yellow sand periods. These figures display
the real-time hourly forecasting values for PM10_K(N), PM2.5_K(N), NO2_K(N), SO2_K(N),
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O3_K(N) and CO_K(N) calculated by multivariate regression models with the three-hours-
earlier data before, during and after the yellow sand periods. Through the comparison of
the predicted and measured values, we investigated in which time period the applicability
of the predicted values to the measured ones was better.
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Kangnung, Korea.

Before the yellow sand period, the difference in the applicability of the real-time
predicted values to the measured ones could be shown by the Pearson regression coefficients
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of PM10_K(N) (0.957), PM2.5_K(N) (0.906), NO2_K(N) (0.886), O3_K(N) (0.932) and CO_K(N)
(0.864), which were slightly higher than for SO2_K(N) (0.795). Therefore, the real-time
predicted values of PM10_K(N), PM2.5_K(N), NO2_K(N), SO2_K(N), O3_K(N) and CO_K(N)
fit their measured values very well; even the predicted values of SO2_K(N) were only
slightly more deviated from the measured ones.

During the yellow sand event, all of the real-time predicted values fitted the measured
values much better than before the event, except for NO2_K(N), which had a slightly lower
correlation coefficient. After the event, the real-time predicted values still fitted with the
measured values very well and were similar to the cases before and during the yellow
sand period.

As a result, the real-time predicted values of PM10_K(N), PM2.5_K(N), NO2_K(N),
SO2_K(N), O3_K(N) and CO_K(N) were all very close to their measured values, showing
that they were reproduced well, even though the applicability of SO2_K(N) was slightly
more deviated before the yellow sand event. This means that there is a time gap between
their concentrations or it has a slightly bigger or smaller value in the higher and the
maximum concentrations before the period. This may be attributed to a slightly lower
correlation coefficient, as shown in Figure 6 and Table 2.

We further compared our simulation results using multivariate regression models
and artificial neural network models with similar scientific works by several scientists in
Table 8. As hourly averaged or daily averaged pollutant concentrations with or without
meteorological data were used differently by individual scientists, it is not easy to compare
the results calculated by each other. However, even though the same kinds of input
data for the model were used, it is desirable to compare the accuracy of the different
model performances.

Thus, the comparison results in Table 8 show that the correlation coefficients between
the hourly predicted and measured values calculated by our multivariate regression models
were 0.886 to 0.982. The accuracy of our calculated values is in the middle range compared
with the results calculated using various models by other authors. If the performance of
our multivariate regression model using hourly averaged input data is compared with the
model performance by ANN-sig, SVR, random forest and multivariate regression using
daily averaged data, it has much higher accuracy of calculation than the models performed
by Jeon and Son [36] and Kim [37]; however, our model performance has relatively lower
accuracy than Lim’s models. Our future research will be carried out using both artificial
neural network models and multivariate regression models and the calculation results from
the models will be compared with each other.
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Table 8. Prediction performance using different models from different scientists regarding the yellow sand event (YS), with correlation coefficients (Pearson’s r).
Reference: ANN-sig (Artificial neural network-sigmoid), ANN-tanh (Artificial neural network-tanh), SVM (Support vector machine), RF (Random forest),
Multivariate (Multivariate regression) and SVR (Support vector regression).

Pearson r

Name Model
Before (Hourly) YS During (Hourly) YS After (Hourly) YS Daily/Seasonal/

Annual

PM10 PM2.5 NO2 PM10 PM2.5 NO2 PM10 PM2.5 NO2 PM10 PM2.5 NO2

(1) Jeon and Son, 2018 [40]

ANN-sig 0.737

SVM 0.751

Random F 0.726

(2) Kim, 2019 [37] Multivariate 0.849

(3) Lim, 2019 [38]

ANN-sig 0.962

SVR 0.962

Multivariate 0.958

(4) Choi and Choi, 2021 [41] Multivariate 0.983 0.998 0.916 0.998 0.941 0.998

(5) Choi, S.-M., 2022 [39]

ANN-sig 0.954 0.866 0.873 0.941 0.960 0.975 0.930 0.953 0.917

ANN-tanh 0.974 0.958 0.953 0.971 0.983 0.930 0.953 0.960 0.959

Multivariate 0.961 0.909 0.896 0.948 0.977 0.875 0.920 0.947 0.903

(6) Choi et al., 2023 Multivariate 0.957 0.906 0.886 0.936 0.982 0.866 0.919 0.945 0.902
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4. Conclusions

Predicting real-time air pollution concentrations in a city using historical air pollution
concentration data is a very important but difficult task in all industrialized countries. The
reason is that too many factors are involved and some of the air pollutants cross the border
and flow into the local city, making the air pollution concentration in that city very high and
the air pollution concentration also depends on the weather conditions of the city itself. In
this study, we developed multivariate regression models for the real-time prediction of air
quality at the current time before, during and after the yellow sand periods in Kangnung
using the 3 h-earlier PM and gas concentration and meteorological parameter data from
the city and the 2-days-earlier PM and gas concentration data from Beijing. Our research
results are summarized as follows.

The correlation coefficient between the predicted and measured real-time PM10 and
PM2.5 values calculated by the model were 0.919–0.957 and 0.906–0.945, and the prediction
abilities during the event were the maximum. On the other hand, the correlation coefficients
for NO2, SO2, O3 and CO were 0.866–0.902, 0.795–0.917, 0.892–0.932 and 0.864–0.887,
respectively, which were slightly lower than those for the PM values. However, their
predicted values well reflect the measured ones and the predictive performance of our
models was slightly better than other scholars’ multivariate regression models.

Before the Yellow Sand event, the PM10, PM2.5, NO2, SO2 and CO concentrations in
Kangnung were not affected by the PM concentrations in Beijing, but some of them were
affected by the gas concentrations in Beijing. During and after the yellow sand event, all PM
and gas concentrations, except for O3, in Kangnung City were affected by all PM and gas
concentrations in Beijing City, except for O3. The contribution of meteorological parameters
to air pollutant concentrations in Kangnung was relatively smaller than the effect of PM
and gas concentrations in Beijing City. The significance levels of all correlation coefficients
were less than 0.001, indicating that they were very significant.

Generally, to predict air pollution concentrations, numerical models, multivariate
regression statistical models, neural network models and meteorological satellite image
interpretation methods are used. Since each method has advantages and disadvantages and
the methods complement each other, I think that there is no need to analyze which method
is superior. Rather, there is a need to improve each process to improve the prediction ability.
Further studies of air pollution prediction in urban areas need to obtain a deeper, more
comprehensive understanding the physical processes leading to the observed differences
between local cities and trans-border cities for solving the nationwide air quality problem
via useful models.
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